New active site oriented glyoxyl-agarose derivatives of Escherichia coli penicillin G acylase

نویسندگان

  • Davide A Cecchini
  • Immacolata Serra
  • Daniela Ubiali
  • Marco Terreni
  • Alessandra M Albertini
چکیده

BACKGROUND Immobilized Penicillin G Acylase (PGA) derivatives are biocatalysts that are industrially used for the hydrolysis of Penicillin G by fermentation and for the kinetically controlled synthesis of semi-synthetic beta-lactam antibiotics. One of the most used supports for immobilization is glyoxyl-activated agarose, which binds the protein by reacting through its superficial Lys residues. Since in E. coli PGA Lys are also present near the active site, an immobilization that occurs through these residues may negatively affect the performance of the biocatalyst due to the difficult diffusion of the substrate into the active site. A preferential orientation of the enzyme with the active site far from the support surface would be desirable to avoid this problem. RESULTS Here we report how it is possible to induce a preferential orientation of the protein during the binding process on aldehyde activated supports. A superficial region of PGA, which is located on the opposite side of the active site, is enriched in its Lys content. The binding of the enzyme onto the support is consequently forced through the Lys rich region, thus leaving the active site fully accessible to the substrate. Different mutants with an increasing number of Lys have been designed and, when active, immobilized onto glyoxyl agarose. The synthetic performances of these new catalysts were compared with those of the immobilized wild-type (wt) PGA. Our results show that, while the synthetic performance of the wt PGA sensitively decreases after immobilization, the Lys enriched mutants have similar performances to the free enzyme even after immobilization. We also report the observations made with other mutants which were unable to undergo a successful maturation process for the production of active enzymes or which resulted toxic for the host cell. CONCLUSION The desired orientation of immobilized PGA with the active site freely accessible can be obtained by increasing the density of Lys residues on a predetermined region of the enzyme. The newly designed biocatalysts display improved synthetic performances and are able to maintain a similar activity to the free enzymes. Finally, we found that the activity of the immobilized enzyme proportionally improves with the number of introduced Lys.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stabilization of penicillin G acylase from Escherichia coli: site-directed mutagenesis of the protein surface to increase multipoint covalent attachment.

Three mutations on the penicillin acylase surface (increasing the number of Lys in a defined area) were performed. They did not alter the enzyme's stability and kinetic properties; however, after immobilization on glyoxyl-agarose, the mutant enzyme showed improved stability under all tested conditions (e.g., pH 2.5 at 4 degrees C, pH 5 at 60 degrees C, pH 7 at 55 degrees C, or 60% dimethylforma...

متن کامل

Diffusional restrictions in glyoxyl-agarose immobilized penicillin G acylase of different particle size and protein loading

Particle size and enzyme protein loading are design parameters of enzyme immobilization affecting biocatalyst performance that can be varied within broad margins. Their effect on mass transfer limitations at different bulk penicillin G concentrations has been studied with glyoxyl agarose immobilized penicillin G acylase biocatalysts of average particle size of 5·10m and 10·10m at protein loadin...

متن کامل

Optimization of Enzymatic Synthesis of Ampicillin Using Cross-Linked Aggregates of Penicillin G Acylase

Penicillin G acylase from E. coli TA1 was immobilized by Cross-Linked Enzyme Aggregates (CLEA), a new method for immobilization. This biocatalyst and commercial immobilized penicillin G acylase (PGA-450) were used to study the effect of pH, temperature and substrate concentration on the synthesis of ampicillin from phenyl glycine methyl ester (PGME) and 6-aminopenicillanic acid (6-APA). Compare...

متن کامل

Optimization of Enzymatic Synthesis of Ampicillin Using Cross-Linked Aggregates of Penicillin G Acylase

Penicillin G acylase from E. coli TA1 was immobilized by Cross-Linked Enzyme Aggregates (CLEA), a new method for immobilization. This biocatalyst and commercial immobilized penicillin G acylase (PGA-450) were used to study the effect of pH, temperature and substrate concentration on the synthesis of ampicillin from phenyl glycine methyl ester (PGME) and 6-aminopenicillanic acid (6-APA). Compare...

متن کامل

Kinetic Parameter Studies of 6-Amino Penicillanic Acid (6-APA) Production by Agarose Immobilized Penicillin Acylase in a Packed Column Reactor

Penicillin acylase, an industrially important biocatalyst catalyzes the conversion of penicillins to 6-amino penicillanic acid (6-APA) which is the main precursor for the production of semisynthetic ß-lactam antibiotics. The present work involves the continuous production of 6APA in a packed column reactor by using agarose immobilized penicillin acylase as a block polymer. The strain Escherichi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BMC Biotechnology

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2007